Using GH-Method: Math-Physical Medicine to Calculate Individual Metabolism Category’s Score for Maintaining General Health from the Endocrinology Viewpoint

Gerald C Hsu

Eclaire MD Foundation, USA

*Corresponding author
Gerald C Hsu, Eclaire MD Foundation, USA

Submitted: 23 Apr 2020; Accepted: 30 Apr 2020; Published: 09 Sept 2020

Abstract
The author developed his GH-Method: math-physical medicine (MPM) by applying mathematics, physics, engineering modeling, and computer science (big data analytics and AI) to derive the mathematical metabolism. This study provides quantitative details of 10 metabolic categories for the metabolism index to achieve a better score for the 90-days moving average from the endocrinology viewpoint.

Keywords: Type 2 diabetes, Metabolism, Metabolic Conditions, Chronic Diseases, Lifestyle Data, Artificial Intelligence, And Math-Physical Medicine.

Introduction
This paper provides quantitative details of the 10 metabolic categories of 4 outputs and 6 inputs for the metabolism index (MI) model to achieve a better score on the general health status unit: GHSU: 90-days moving average of MI. The results provide insightful knowledge on maintaining general health from the endocrinology viewpoint. The dataset is provided by the author, who uses his own type 2 diabetes metabolic conditions control, as a case study via the “math-physical medicine” approach of a non-traditional methodology in medical research.

Math-physical medicine (MPM) starts with the observation of the human body’s physical phenomena (not biological or chemical characteristics), collecting elements of the disease related data (preferring big data), utilizing applicable engineering modeling techniques, developing appropriate mathematical equations (not just statistical analysis), and finally predicting the direction of the development and control mechanism of the disease.

Methods
The data collection for this analysis started from 2012 to 2015 and completed on 5/31/2019. Approximately 1.5 million data was collected from a severe type 2 diabetes patient, who is the author himself. The GH-Method: MPM methodology has been described in many of his previous publications.

His initial health conditions from 2010-2012 were:
1. Weight/ Waistline/ BMI: 220 lbs./ 44in./ 32 (obese)
2. Glucose/ A1C: 280mg/dL/ 10%
3. Triglycerides/ ACR: 1,161mg/dL/ 116mg/dL
4. Cardiac episodes: Five times
5. Other complications: Renal, retinal, foot ulcer, and thyroid

Results
As shown in Table 1 and Figures 2-8, here are his performance scores for the metabolism categories:

<table>
<thead>
<tr>
<th>Category</th>
<th>Worst Condition</th>
<th>Best Condition</th>
<th>MI Score</th>
<th>MI Score %</th>
<th>Unit</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>1.5</td>
<td>0.7</td>
<td>0.790</td>
<td>91%</td>
<td>6 bottles (500 cc each)</td>
<td>drink 5.56 bottles or 2,780 cc per day</td>
</tr>
<tr>
<td>Stress</td>
<td>1.5</td>
<td>0.5</td>
<td>0.5283</td>
<td>97%</td>
<td>total of 19 conditions</td>
<td>a “stresses life”</td>
</tr>
<tr>
<td>Sleep</td>
<td>1.5</td>
<td>0.5</td>
<td>0.6400</td>
<td>86%</td>
<td>total of 9 conditions</td>
<td>quite good sleep conditions</td>
</tr>
<tr>
<td>Sleep Hours</td>
<td>4</td>
<td>8</td>
<td>7.1000</td>
<td>78%</td>
<td>8 hours per night</td>
<td>sleep for 7.5 hours per night</td>
</tr>
<tr>
<td>Wakeup Times</td>
<td>5</td>
<td>0</td>
<td>1.5000</td>
<td>69%</td>
<td>wake up 1.56 times per night</td>
<td></td>
</tr>
<tr>
<td>Food & Meal Score</td>
<td>1.5</td>
<td>0.5</td>
<td>0.6671</td>
<td>83%</td>
<td>50% quantity & 50% quality</td>
<td>need further more portion reduction</td>
</tr>
<tr>
<td>Food Quantity</td>
<td>1.5</td>
<td>0.5</td>
<td>0.8611</td>
<td>64%</td>
<td>70% of normal food portion</td>
<td>86% of normal portion per meal</td>
</tr>
<tr>
<td>Food Quality</td>
<td>1.5</td>
<td>0.5</td>
<td>0.5281</td>
<td>97%</td>
<td>balanced nutrition & low carb food</td>
<td></td>
</tr>
<tr>
<td>Walking Exercise</td>
<td>1.5</td>
<td>0.5</td>
<td>0.6869</td>
<td>81%</td>
<td>20,000 steps</td>
<td>16,200 steps/day & 4,200 steps/meal</td>
</tr>
<tr>
<td>Daily Routine</td>
<td>1.5</td>
<td>0.7</td>
<td>0.7353</td>
<td>90%</td>
<td>a “regular routine” daily life pattern</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Scores or satisfaction levels of metabolic input
Figure 2: Weight

Figure 3: Glucose

Figure 4: A1C

Figure 5: Blood Pressure & Lipids

Figure 6: Water Drinking Intake

Figure 7: Food and Meal
1. **Energy infusion:**
 - (1a) Water drinking: 5.56 bottles or 2,780 cc per day
 - (1b) Food & Meal Score/ Quantity/ Quality: 83%/ 86% of normal food portion/ 97% quality
 - (1c) Sleep score/ Sleep hours/ Wake up times: 86%/ 7.5 hours/ 1.56 times

2. **Energy consumption:**
 - (2a) Walking steps: 16,200 per day and 4,200 per meal
 - (2b) Stress: Satisfaction level 97%
 - (2c) Daily Routine: Satisfaction level 96%

As depicted in Figure 1, due to his stringent and disciplined lifestyle management, his health conditions (metabolism outputs) are:

1. MI & GHSU: From >100% (unhealthy) down to ~60% (healthy)
2. Weight/ Waistline/ BMI: 170lbs./ 32 in./ 24.7
3. Glucose/ A1C: ~116mg/dL/ ~6.6%
4. Hypertension & Hyperlipidemia: Both are under control
5. ACR: From 116 to 8mg/g
6. Cardiac episodes & other complications: None
Conclusion

This paper presents the summarized results of the author’s 8.5 year’s effort to control his metabolic disorders via a scientific and quantitative lifestyle management program by using the GH Method: math-physical medicine. The comparison of health conditions at 2012 and 2019 shows significant improvements. Using this kind of health maintenance program is extremely beneficial for controlling many endocrine diseases.

References

